Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector.

阅读:9
作者:Moskal P, Krawczyk N, Hiesmayr B C, Bała M, Curceanu C, Czerwiński E, Dulski K, Gajos A, Gorgol M, Del Grande R, Jasińska B, Kacprzak K, Kapłon L, Kisielewska D, Klimaszewski K, Korcyl G, Kowalski P, Kozik T, Krzemień W, Kubicz E, Mohammed M, Niedźwiecki Sz, Pałka M, Pawlik-Niedźwiecka M, Raczyński L, Raj J, Rudy Z, Sharma S, Silarski M, Shivani, Shopa R Y, Skurzok M, Wiślicki W, Zgardzińska B
J-PET is a detector optimized for registration of photons from the electron-positron annihilation via plastic scintillators where photons interact predominantly via Compton scattering. Registration of both primary and scattered photons enables to determinate the linear polarization of the primary photon on the event by event basis with a certain probability. Here we present quantitative results on the feasibility of such polarization measurements of photons from the decay of positronium with the J-PET and explore the physical limitations for the resolution of the polarization determination of 511 keV photons via Compton scattering. For scattering angles of about 82 ∘ (where the best contrast for polarization measurement is theoretically predicted) we find that the single event resolution for the determination of the polarization is about 40 ∘ (predominantly due to properties of the Compton effect). However, for samples larger than ten thousand events the J-PET is capable of determining relative average polarization of these photons with the precision of about few degrees. The obtained results open new perspectives for studies of various physics phenomena such as quantum entanglement and tests of discrete symmetries in decays of positronium and extend the energy range of polarization measurements by five orders of magnitude beyond the optical wavelength regime.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。