A specialized primal-dual interior point method for the plastic truss layout optimization.

阅读:6
作者:Weldeyesus Alemseged Gebrehiwot, Gondzio Jacek
We are concerned with solving linear programming problems arising in the plastic truss layout optimization. We follow the ground structure approach with all possible connections between the nodal points. For very dense ground structures, the solutions of such problems converge to the so-called generalized Michell trusses. Clearly, solving the problems for large nodal densities can be computationally prohibitive due to the resulting huge size of the optimization problems. A technique called member adding that has correspondence to column generation is used to produce a sequence of smaller sub-problems that ultimately approximate the original problem. Although these sub-problems are significantly smaller than the full formulation, they still remain large and require computationally efficient solution techniques. In this article, we present a special purpose primal-dual interior point method tuned to such problems. It exploits the algebraic structure of the problems to reduce the normal equations originating from the algorithm to much smaller linear equation systems. Moreover, these systems are solved using iterative methods. Finally, due to high degree of similarity among the sub-problems after preforming few member adding iterations, the method uses a warm-start strategy and achieves convergence within fewer interior point iterations. The efficiency and robustness of the method are demonstrated with several numerical experiments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。