Chemical force microcopy, a variation of atomic force microscopy, opened the door to visualize chemical nano-properties of various materials in their natural state. The key function of this method is given by translating adhesion forces between a functionalized tip and the sample to chemical surface behavior. In force titration, these adhesion forces are studied in different pH buffers, which allows estimating the pK (a) value of the analyzed surface. Herein, we report the use of this method to study natural and chemically treated wood surfaces, which are of interest in sustainable material design. First, we show varying adhesion phenomena of OH- and COOH-functionalized tips on native spruce wood cells. Then, we demonstrate how peak force tapping with chemically functionalized tips can be used to estimate the pK (a) value of gold substrates (pK (a) â 5.2) and different wood cell wall layers with high spatial resolution. Additionally, the swelling behavior of wood samples is analyzed in varying pH buffers. With the applied method, chemical surface properties of complex natural substrates can be analyzed.
Local force titration of wood surfaces by chemical force microscopy.
阅读:7
作者:Gusenbauer Claudia, Peter Karolina, Cabane Etienne, Konnerth Johannes
| 期刊: | Cellulose | 影响因子: | 4.800 |
| 时间: | 2022 | 起止号: | 2022;29(2):763-776 |
| doi: | 10.1007/s10570-021-04342-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
