Altered Ca(2+) signaling in skeletal muscle fibers of the R6/2 mouse, a model of Huntington's disease

亨廷顿氏病模型 R6/2 小鼠骨骼肌纤维中 Ca(2+) 信号发生改变

阅读:7
作者:Peter Braubach, Murat Orynbayev, Zoita Andronache, Tanja Hering, Georg Bernhard Landwehrmeyer, Katrin S Lindenberg, Werner Melzer

Abstract

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat within the gene encoding the protein huntingtin. The resulting elongated glutamine (poly-Q) sequence of mutant huntingtin (mhtt) affects both central neurons and skeletal muscle. Recent reports suggest that ryanodine receptor-based Ca(2+) signaling, which is crucial for skeletal muscle excitation-contraction coupling (ECC), is changed by mhtt in HD neurons. Consequently, we searched for alterations of ECC in muscle fibers of the R6/2 mouse, a mouse model of HD. We performed fluorometric recordings of action potentials (APs) and cellular Ca(2+) transients on intact isolated toe muscle fibers (musculi interossei), and measured L-type Ca(2+) inward currents on internally dialyzed fibers under voltage-clamp conditions. Both APs and AP-triggered Ca(2+) transients showed slower kinetics in R6/2 fibers than in fibers from wild-type mice. Ca(2+) removal from the myoplasm and Ca(2+) release flux from the sarcoplasmic reticulum were characterized using a Ca(2+) binding and transport model, which indicated a significant reduction in slow Ca(2+) removal activity and Ca(2+) release flux both after APs and under voltage-clamp conditions. In addition, the voltage-clamp experiments showed a highly significant decrease in L-type Ca(2+) channel conductance. These results indicate profound changes of Ca(2+) turnover in skeletal muscle of R6/2 mice and suggest that these changes may be associated with muscle pathology in HD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。