Multi-omics analysis reveals the molecular basis of flavonoid accumulation in fructus of Gardenia (Gardenia jasminoides Ellis)

多组学分析揭示栀子中黄酮类化合物积累的分子基础

阅读:12
作者:Jianrong Chen, Weizhuo Tang, Chunyan Li, Ding Kuang, Xiaojiang Xu, Yuan Gong, Fang Liu, Song Gao

Background

The fruits of Gardenia are rich in flavonoids and geniposides, which have various pharmacological effects such as antioxidant, anti-inflammatory and anticancer. In this study, we analyzed the transcriptome and metabolome of gardenia peel and kernel at different growth stages, revealed the regulatory network related to flavonoid synthesis, and identified the key regulatory genes.

Conclusions

In summary, this study successfully screened out the key genes related to the biosynthesis metabolism of flavonoids in gardenia through the joint analysis of transcriptome and metabolome. This is of certain significance to the in-depth study of the formation mechanism of gardenia efficacy components and the improvement of quality.

Results

The results showed that in terms of flavonoid metabolic pathways, gardenia fruits mainly synthesized cinnamic acid through the phenylpropanoid pathway, and then synthesized flavonoids through the action of catalytic enzymes such as 4-coumaroyl-CoA ligase, chalcone synthase, chalcone isomerase and flavanol synthase, respectively. In addition, we found that the metabolomics data showed a certain spatial and temporal pattern in the expression of genes related to the flavonoid metabolism pathway and the relative content of metabolites, which was related to the development and ripening process of the fruit. Conclusions: In summary, this study successfully screened out the key genes related to the biosynthesis metabolism of flavonoids in gardenia through the joint analysis of transcriptome and metabolome. This is of certain significance to the in-depth study of the formation mechanism of gardenia efficacy components and the improvement of quality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。