Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome editing

通过 CRISPR/Cas9 基因组编辑逆转藻类希瓦氏菌对卡巴培南类抗生素的耐药性

阅读:15
作者:Zong-Yen Wu, Yao-Ting Huang, Wen-Cheng Chao, Shu-Peng Ho, Jan-Fang Cheng, Po-Yu Liu

Abstract

Antibiotic resistance in pathogens is a growing threat to human health. Of particular concern is resistance to carbapenem, which is an antimicrobial agent listed as critically important by the World Health Organization. With the global spread of carbapenem-resistant organisms, there is an urgent need for new treatment options. Shewanella algae is an emerging pathogen found in marine environments throughout the world that has increasing resistance to carbapenem. The organism is also a possible antibiotic resistance reservoir in humans and in its natural habitat. The development of CRISPR/Cas9-based methods has enabled precise genetic manipulation. A number of attempts have been made to knock out resistance genes in various organisms. The study used a single plasmid containing CRISPR/Cas9 and recE/recT recombinase to reverse an antibiotic-resistant phenotype in S. algae and showed bla OXA-55 -like gene is essential for the carbapenem resistance. This result demonstrates a potential validation strategy for functional genome annotation in S. algae.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。