Trichinellosis represents great public health and economic problems worldwide. Moreover, the development of parasitic resistance against conventional anthelminthic treatment led to the urgent search for new therapeutic strategies, including drug repurposing. Bisphosphonates have been used to inhibit the growth of many parasites and have also emerged as promising candidates for the treatment of cryptosporidiosis and amoebic liver abscess. Alendronate is a second-generation bisphosphonate that is widely used for the treatment and prevention of osteoporosis. Till date, there is not enough data on the effect of this drug on Trichinella spiralis and it is unknown whether the regular use of this drug in osteoporotic patients may alter the course of the infection. ALN showed a significant lethal effect on both adult worms and juveniles, with severe tegumental damage in the form of fissures in the cuticle, widening of the hypodermal gland, and flattening of the cuticular annulation, ending with the appearance of multiple vesicles and large cauliflower masses. Molecular docking outcomes unveiled the potential inhibition of ALN against T. spiralis surface proteins (i.e., Ts-SP, Ts-PPase, Ts-MAPRC2, Ts-TS, Ts-MIF, etc.), with promising results confirmed its ability to defeat T. spiralis via targeting its surface proteins. Moreover, molecular dynamics simulation, through the analysis of RMSD, RMSF, RG, SASA and cluster analysis, proved the prolonged effective inhibition of ALN on T. spiralis inorganic pyrophosphatase, as an essential surface protein required for molting and developmental process of intestinal larval stages. Thus, ALN might be a valuable drug candidate for the treatment of trichinellosis and warrant further investigation in animal models of disease.
Alendronate repositioning as potential anti-parasitic agent targeting Trichinella spiralis inorganic pyrophosphatase, in vitro supported molecular docking and molecular dynamics simulation study.
阅读:6
作者:Hanafy Marmar A, Nassar Doaa A, Zahran Fatima M, Mohammed Magdy M D
| 期刊: | BMC Chemistry | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 May 6; 19(1):119 |
| doi: | 10.1186/s13065-025-01468-4 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
