Solubility and thermodynamic analysis of aceclofenac in different {Carbitol + water} mixtures at various temperatures.

阅读:4
作者:Shakeel Faiyaz, Al-Shdefat Ramadan, Altamimi Mohammad A, Ahmad Usama
The solubility and thermodynamic properties of the anti-inflammatory drug aceclofenace (ACF) have been assessed in a range of {2-(2-ethoxyethoxy)ethanol (Carbitol) + water} combinations at temperatures ranging from 298.2 K to 318.2 K and atmospheric pressure of 101.1 kPa. The shake flask method was employed to determine the solubility of ACF, and various models including "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models" were used to validate the results. The computational models demonstrated a strong correlation with the experimental ACF solubility data, as indicated by the error values of < 3.0%. In the compositions of {Carbitol + water}, the ACF mole fraction solubility was enhanced by temperature and Carbitol mass fraction. The solubility of ACF in mole fraction was found to be lowest in pure water (1.07 × 10(- 6) at 298.2 K), and highest in pure Carbitol (1.04 × 10(- 1) at 318.2 K). Based on the positive values of the calculated thermodynamic parameters, the dissolution of ACF was determined to be "endothermic and entropy-driven" in all of the {Carbitol + water} solutions that were studied. It was also observed that enthalpy controls the solvation of ACF in solutions containing {Carbitol + water}. ACF-Carbitol had the strongest molecular interactions in contrast to ACF-water. Based on the results of this study, Carbitol holds significant potential for enhancing the solubility of ACF in water.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。