A novel hybrid approach for predicting and optimizing the adsorption of methyl orange and Cr(VI) removal from aqueous solutions using fungal-cross linked chitosan integrated into graphene oxide as a cost-effective adsorbent.

阅读:4
作者:Hamad, Mohammed, T, M, H
The release of organic dyes and heavy metal ions in wastewater from various industries has become a significant environmental issue, prompting the need for effective solutions like remediation technology to reduce these pollutants in water. In this research, we fabricated a GO@Cs-GLA-TiO(2) composite and assessed its performance in adsorbing methyl orange and hexavalent chromium from aqueous solutions. The composite material was thoroughly characterized using techniques such as Fourier-transform infrared spectroscopy, scanning electron microscopy, Energy-dispersive X-ray, and X-ray diffraction. Batch adsorption experiments were conducted, and key parameters such as contact time, pH, adsorbent dosage, and concentration were varied systematically. The adsorption of MO and Cr(VI) fit the pseudo-second-order kinetic model and the Langmuir and the Freundlich isotherm models. The maximum adsorption capacity for MO was 277.7 ± 1.8 mg/g, and for Cr(VI), it was 33.98.3 ± 0.48 mg/g. The artificial neural networks model demonstrated a high coefficient of determination (R(2) = 0.9996) and a low mean squared error (0.025), indicating its robustness in simulating the MO removal process under various conditions. Furthermore, the adsorption kinetics were well-described by Haldane's model, which showed the best fit compared to other models tested. Notably, the GO@Cs-GLA-TiO(2) composite was highly reusable, maintaining 85 ± 4.6% of its Cr(VI) adsorption capacity and 88.13 ± 3.05% of its MO adsorption capacity after four cycles of adsorption-desorption. This work highlights the significant potential of the GO@Cs-GLA-TiO(2) composite as an efficient, sustainable material for wastewater treatment, making it a valuable contribution to environmental remediation research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。