In addition to causing trillion-dollar economic losses every year, counterfeiting threatens human health, social equity and national security. Current materials for anti-counterfeiting labelling typically contain toxic inorganic quantum dots and the techniques to produce unclonable patterns require tedious fabrication or complex readout methods. Here we present a nanoprinting-assisted flash synthesis approach that generates fluorescent nanofilms with physical unclonable function micropatterns in milliseconds. This all-in-one approach yields quenching-resistant carbon dots in solid films, directly from simple monosaccharides. Moreover, we establish a nanofilm library comprising 1,920 experiments, offering conditions for various optical properties and microstructures. We produce 100 individual physical unclonable function patterns exhibiting near-ideal bit uniformity (0.492â±â0.018), high uniqueness (0.498â±â0.021) and excellent reliability (>93%). These unclonable patterns can be quickly and independently read out by fluorescence and topography scanning, greatly improving their security. An open-source deep-learning model guarantees precise authentication, even if patterns are challenged with different resolutions or devices.
An all-in-one nanoprinting approach for the synthesis of a nanofilm library for unclonable anti-counterfeiting applications.
阅读:3
作者:Zhang Junfang, Liu Yuxin, Njel Christian, Ronneberger Sebastian, Tarakina Nadezda V, Loeffler Felix F
| 期刊: | Nature Nanotechnology | 影响因子: | 34.900 |
| 时间: | 2023 | 起止号: | 2023 Sep;18(9):1027-1035 |
| doi: | 10.1038/s41565-023-01405-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
