Rapid developments in machine vision technology have impacted a variety of applications, such as medical devices and autonomous driving systems. These achievements, however, typically necessitate digital neural networks with the downside of heavy computational requirements and consequent high energy consumption. As a result, real-time decision-making is hindered when computational resources are not readily accessible. Here we report a meta-imager designed to work together with a digital back end to offload computationally expensive convolution operations into high-speed, low-power optics. In this architecture, metasurfaces enable both angle and polarization multiplexing to create multiple information channels that perform positively and negatively valued convolution operations in a single shot. We use our meta-imager for object classification, achieving 98.6% accuracy in handwritten digits and 88.8% accuracy in fashion images. Owing to its compactness, high speed and low power consumption, our approach could find a wide range of applications in artificial intelligence and machine vision applications.
Multichannel meta-imagers for accelerating machine vision.
阅读:3
作者:Zheng Hanyu, Liu Quan, Kravchenko Ivan I, Zhang Xiaomeng, Huo Yuankai, Valentine Jason G
| 期刊: | Nature Nanotechnology | 影响因子: | 34.900 |
| 时间: | 2024 | 起止号: | 2024 Apr;19(4):471-478 |
| doi: | 10.1038/s41565-023-01557-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
