BACKGROUND: MicroRNA (miRNA) and messenger RNA (mRNA) expression differs in cystic fibrosis (CF) versus non-CF bronchial epithelium. Here, the role of miRNA in basal regulation of the transcription factor ATF6 was investigated in bronchial epithelial cells in vitro and in vivo. METHODS: Using in silico analysis, miRNAs predicted to target the 3'untranslated region (3'UTR) of the human ATF6 mRNA were identified. RESULTS: Three of these miRNAs, miR-145, miR-221 and miR-494, were upregulated in F508del-CFTR homozygous CFBE41o- versus non-CF 16HBE14o- bronchial epithelial cells and also in F508del-CFTR homozygous or heterozygous CF (nâ=â8) versus non-CF (nâ=â9) bronchial brushings. ATF6 was experimentally validated as a molecular target of these miRNAs through the use of a luciferase reporter vector containing the full-length 3'UTR of ATF6. Expression of ATF6 was observed to be decreased in CF both in vivo and in vitro. miR-221 was also predicted to regulate murine ATF6, and its expression was significantly increased in native airway tissues of 6-week-old βENaC-overexpressing transgenic mice with CF-like lung disease versus wild-type littermates. CONCLUSIONS: These results implicate miR-145, miR-221 and miR-494 in the regulation of ATF6 in CF bronchial epithelium, with miR-221 demonstrating structural and functional conservation between humans and mice. The altered miRNA expression evident in CF bronchial epithelial cells can affect expression of transcriptional regulators such as ATF6.
miRNA-221 is elevated in cystic fibrosis airway epithelial cells and regulates expression of ATF6.
阅读:4
作者:Oglesby Irene K, Agrawal Raman, Mall Marcus A, McElvaney Noel G, Greene Catherine M
| 期刊: | Molecular and Cellular Pediatrics | 影响因子: | 3.400 |
| 时间: | 2015 | 起止号: | 2015 Dec;2(1):1 |
| doi: | 10.1186/s40348-014-0012-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
