The phenomenon of flexoelectricity, wherein mechanical deformation induces alterations in the electron configuration of metal oxides, has emerged as a promising avenue for regulating electron transport. Leveraging this mechanism, stress sensing can be optimized through precise modulation of electron transport. In this study, the electron transport in 2D ultra-smooth In(2)O(3) crystals is modulated via flexoelectricity. By subjecting cubic In(2)O(3) (c-In(2)O(3)) crystals to significant strain gradients using an atomic force microscope (AFM) tip, the crystal symmetry is broken, resulting in the separation of positive and negative charge centers. Upon applying nano-scale stress up to 100Â nN, the output voltage and power values reach their maximum, e.g. 2.2Â mV and 0.2Â pW, respectively. The flexoelectric coefficient and flexocoupling coefficient of c-In(2)O(3) are determined as â0.49Â nCÂ m(-1) and 0.4Â V, respectively. More importantly, the sensitivity of the nano-stress sensor upon c-In(2)O(3) flexoelectric effect reaches 20Â nN, which is four to six orders smaller than that fabricated with other low dimensional materials based on the piezoresistive, capacitive, and piezoelectric effect. Such a deformation-induced polarization modulates the band structure of c-In(2)O(3), significantly reducing the Schottky barrier height (SBH), thereby regulating its electron transport. This finding highlights the potential of flexoelectricity in enabling high-performance nano-stress sensing through precise control of electron transport.
Flexoelectricity Modulated Electron Transport of 2D Indium Oxide.
阅读:5
作者:Hu Xinyi, Yu Chen Guan, Luan Yange, Tang Tao, Liang Yi, Ren Baiyu, Chen Liguo, Zhao Yulong, Zhang Qi, Huang Dong, Sun Xiao, Cheng Yin Fen, Ou Jian Zhen
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2024 | 起止号: | 2024 Sep;11(33):e2404272 |
| doi: | 10.1002/advs.202404272 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
