KEY POINTS: We investigated the cellular mechanisms underlying mossy fibre-induced heterosynaptic long-term potentiation of perforant path (PP) inputs to CA3 pyramidal cells. Here we show that this heterosynaptic potentiation is mediated by downregulation of Kv1.2 channels. The downregulation of Kv1.2 preferentially enhanced PP-evoked EPSPs which occur at distal apical dendrites. Such enhancement of PP-EPSPs required activation of dendritic Na(+) channels, and its threshold was lowered by downregulation of Kv1.2. Our results may provide new insights into the long-standing question of how mossy fibre inputs constrain the CA3 network to sparsely represent direct cortical inputs. ABSTRACT: A short high frequency stimulation of mossy fibres (MFs) induces long-term potentiation (LTP) of direct cortical or perforant path (PP) synaptic inputs in hippocampal CA3 pyramidal cells (CA3-PCs). However, the cellular mechanism underlying this heterosynaptic modulation remains elusive. Previously, we reported that repetitive somatic firing at 10Â Hz downregulates Kv1.2 in the CA3-PCs. Here, we show that MF inputs induce similar somatic firing and downregulation of Kv1.2 in the CA3-PCs. The effect of Kv1.2 downregulation was specific to PP synaptic inputs that arrive at distal apical dendrites. We found that the somatodendritic expression of Kv1.2 is polarized to distal apical dendrites. Compartmental simulations based on this finding suggested that passive normalization of synaptic inputs and polarized distributions of dendritic ionic channels may facilitate the activation of dendritic Na(+) channels preferentially at distal apical dendrites. Indeed, partial block of dendritic Na(+) channels using 10Â nm tetrodotoxin brought back the enhanced PP-evoked excitatory postsynaptic potentials (PP-EPSPs) to the baseline level. These results indicate that activity-dependent downregulation of Kv1.2 in CA3-PCs mediates MF-induced heterosynaptic LTP of PP-EPSPs by facilitating activation of Na(+) channels at distal apical dendrites.
Kv1.2 mediates heterosynaptic modulation of direct cortical synaptic inputs in CA3 pyramidal cells.
阅读:4
作者:Hyun Jung Ho, Eom Kisang, Lee Kyu-Hee, Bae Jin Young, Bae Yong Chul, Kim Myoung-Hwan, Kim Sooyun, Ho Won-Kyung, Lee Suk-Ho
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2015 | 起止号: | 2015 Aug 15; 593(16):3617-43 |
| doi: | 10.1113/JP270372 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
