Successive recruitment of p-CDC25B-Ser351 and p-cyclin B1-Ser123 to centrosomes contributes to the release of mouse oocytes from prophase I arrest

p-CDC25B-Ser351 和 p-cyclin B1-Ser123 连续募集至着丝粒,促进小鼠卵母细胞从前期 I 停滞状态中释放

阅读:7
作者:Xiangyu Zhao, Chen Feng, Dahai Yu, Xin Deng, Didi Wu, Minglin Jin, Enhua Wang, Xiuxia Wang, Bingzhi Yu

Background

The molecular mechanism that controls the activation of Cyclin B1-CDK1 complex has been widely investigated. It is generally believed that CDC25B acts as a "starter phosphatase" of mitosis. In this study, we investigate the sequential regulation of meiotic resumption by CDC25B and Cyclin B1 in mouse oocytes.

Conclusions

AURKA induced phosphorylation and recruitment of CDC25B to MTOCs prior to p-Cyclin B1-Ser123, and this sequential regulation is essential for the commitment of the oocytes to resume meiosis.

Results

Injection of mRNAs coding for CDC25B-Ser351A and/or Cyclin B1-Ser123A shows a more potent maturation-inhibiting ability than their respective wild type. Co-injection of mRNAs coding for phosphor-mimic CDC25B-Ser351D and Cyclin B1-Ser123D can rescue this prophase I arrest induced by CDC25B-Ser351A or Cyclin B1-Ser123A. In addition, p-CDC25B-Ser351 is co-localized at the microtubule-organizing centers (MTOCs) with Aurora kinase A (AURKA) during maturation and p-Cyclin B1-Ser123 is only captured on MTOCs shortly before germinal vesicle breakdown (GVBD). Depletion of AURKA not only resulted in metaphase I (MI) spindle defects and anaphase I (AI) abnormal chromosomes separation but also prevented the phosphorylation of CDC25B-Ser351 at centrosomes. AURKA depletion induced deficiencies of spindle assembly and progression to MII can be rescued by CDC25B-Ser351D mRNA injection. Conclusions: AURKA induced phosphorylation and recruitment of CDC25B to MTOCs prior to p-Cyclin B1-Ser123, and this sequential regulation is essential for the commitment of the oocytes to resume meiosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。