Shedding light on the interaction between inorganic nanoparticles (NPs) and living microorganisms is at the basis of the development of biohybrid technologies with improved performance. Au NPs have been shown to be able to improve the extracellular electron transfer (EET) in intact bacterial cells interfaced with an electrode; however, detailed information on the role of NP-surface properties in their interaction with bacterial membranes is still lacking. Herein, we unveil how the surface functionalization of Au NPs influences their interaction with photosynthetic bacteria, focusing on cell morphology, growth kinetics, NPs localization, and electrocatalytic performance. We show that functionalization of Au NPs with cysteine in the zwitterionic form results in a uniform NPs distribution in purple bacteria, specifically locating the NPs within the outer-membrane/periplasmic space of bacterial cells. These biohybrid cells, when coupled with an electrode, exhibit enhanced EET and increased (photo)current generation, paving the way for the future development of rationally designed biohybrid electrochemical systems.
Deciphering the Role of Inorganic Nanoparticles' Surface Functionalization on Biohybrid Microbial Photoelectrodes.
阅读:5
作者:Lasala Pierluigi, Matteucci Rosa Maria, Volpicella Saverio Roberto, Honorio Franco Jefferson, Debellis Doriana, Catalano Federico, Milella Antonella, Grisorio Roberto, Suranna Gian Paolo, Agostiano Angela, Curri Maria Lucia, Fanizza Elisabetta, Grattieri Matteo
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2024 | 起止号: | 2024 Oct 30; 16(43):58598-58608 |
| doi: | 10.1021/acsami.4c12070 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
