KLF5 is an essential basic transcriptional factor that regulates a number of physiopathological processes. In this study, we tested whether and how KLF5 modulates the epithelial-mesenchymal transition (EMT). Using transforming growth factor β (TGF-β)- and epidermal growth factor (EGF)-treated epithelial cells as an established model of EMT, we found that KLF5 was downregulated during EMT and that knockdown of KLF5 induced EMT even in the absence of TGF-β and EGF treatment, as indicated by phenotypic and molecular EMT properties. Array-based screening suggested and biochemical analyses confirmed that the microRNA 200 (miR-200) microRNAs, a group of well-established EMT repressors, were transcriptionally activated by KLF5 via its direct binding to the GC boxes in miR-200 gene promoters. Functionally, overexpression of miR-200 prevented the EMT induced by KLF5 knockdown or by TGF-β and EGF treatment, and ectopic expression of KLF5 attenuated TGF-β- and EGF-induced EMT by rescuing the expression of miR-200. In mouse prostates, knockout of Klf5 downregulated the miR-200 family and induced molecular changes indicative of EMT. These findings indicate that KLF5 maintains epithelial characteristics and prevents EMT by transcriptionally activating the miR-200 family in epithelial cells.
KLF5 activates microRNA 200 transcription to maintain epithelial characteristics and prevent induced epithelial-mesenchymal transition in epithelial cells.
阅读:3
作者:Zhang Baotong, Zhang Zhiqian, Xia Siyuan, Xing Changsheng, Ci Xinpei, Li Xin, Zhao Ranran, Tian Sha, Ma Gui, Zhu Zhengmao, Fu Liya, Dong Jin-Tang
| 期刊: | Molecular and Cellular Biology | 影响因子: | 2.700 |
| 时间: | 2013 | 起止号: | 2013 Dec;33(24):4919-35 |
| doi: | 10.1128/MCB.00787-13 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
