Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy.

阅读:5
作者:Mattonen Sarah A, Tetar Shyama, Palma David A, Louie Alexander V, Senan Suresh, Ward Aaron D
Benign radiation-induced lung injury (RILI) is not uncommon following stereotactic ablative radiotherapy (SABR) for lung cancer and can be difficult to differentiate from tumor recurrence on follow-up imaging. We previously showed the ability of computed tomography (CT) texture analysis to predict recurrence. The aim of this study was to evaluate and compare the accuracy of recurrence prediction using manual region-of-interest segmentation to that of a semiautomatic approach. We analyzed 22 patients treated for 24 lesions (11 recurrences, 13 RILI). Consolidative and ground-glass opacity (GGO) regions were manually delineated. The longest axial diameter of the consolidative region on each post-SABR CT image was measured. This line segment is routinely obtained as part of the clinical imaging workflow and was used as input to automatically delineate the consolidative region and subsequently derive a periconsolidative region to sample GGO tissue. Texture features were calculated, and at two to five months post-SABR, the entropy texture measure within the semiautomatic segmentations showed prediction accuracies [areas under the receiver operating characteristic curve (AUC): 0.70 to 0.73] similar to those of manual GGO segmentations (AUC: 0.64). After integration into the clinical workflow, this decision support system has the potential to support earlier salvage for patients with recurrence and fewer investigations of benign RILI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。