There is growing interest in developing causal inference methods for multi-valued treatments with a focus on pairwise average treatment effects. Here we focus on a clinically important, yet less-studied estimand: causal drug-drug interactions (DDIs), which quantifies the degree to which the causal effect of drug A is altered by the presence versus the absence of drug B. Confounding adjustment when studying the effects of DDIs can be accomplished via inverse probability of treatment weighting (IPTW), a standard approach originally developed for binary treatments and later generalized to multi-valued treatments. However, this approach generally results in biased results when the propensity score model is misspecified. Motivated by the need for more robust techniques, we propose two empirical likelihood-based weighting approaches that allow for specifying a set of propensity score models, with the second method balancing user-specified covariates directly, by incorporating additional, nonparametric constraints. The resulting estimators from both methods are consistent when the postulated set of propensity score models contains a correct one; this property has been termed multiple robustness. In this paper, we derive two multiply-robust estimators of the causal DDI, and develop inference procedures. We then evaluate their finite sample performance through simulation. The results demonstrate that the proposed estimators outperform the standard IPTW method in terms of both robustness and efficiency. Finally, we apply the proposed methods to evaluate the impact of renin-angiotensin system inhibitors (RAS-I) on the comparative nephrotoxicity of nonsteroidal anti-inflammatory drugs (NSAID) and opioids, using data derived from electronic medical records from a large multi-hospital health system.
Robust causal inference of drug-drug interactions.
阅读:4
作者:Shu Di, Han Peisong, Hennessy Sean, Miano Todd A
| 期刊: | Statistics in Medicine | 影响因子: | 1.800 |
| 时间: | 2023 | 起止号: | 2023 Mar 30; 42(7):970-992 |
| doi: | 10.1002/sim.9653 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
