The inflammatory response initiated upon burn injury is also associated with extensive metabolic adjustments. While there is a significant body of literature on the characterization of these changes at the metabolite level, little is known on the mechanisms of induction, especially with respect to the role of gene expression. We have comprehensively analyzed changes in gene expression in rat livers during the first 7 d after 20% total body surface area burn injury using Affymetrix microarrays. A total of 740 genes were significantly altered in expression at 1, 2, 4, and 7 d after burn injury compared to sham-burn controls. Functional classification based on gene ontology terms indicated that metabolism, transport, signaling, and defense/inflammation response accounted for more than 70% of the significantly altered genes. Fisher least-significant difference post-hoc testing of the 740 differentially expressed genes indicated that over 60% of the genes demonstrated significant changes in expression either on d 1 or on d 7 postburn. The gene expression trends were corroborated by biochemical measurements of triglycerides and fatty acids 24 h postburn but not at later time points. This suggests that fatty acids are used, at least in part, in the liver as energy substrates for the first 4 d after injury. Our data also suggest that long-term regulation of energy substrate utilization in the liver following burn injury is primarily at the posttranscriptional level. Last, relevance networks of significantly expressed genes indicate the involvement of key small molecules in the hepatic response to 20% total body surface area burn injury.
Gene expression profiling of long-term changes in rat liver following burn injury.
阅读:3
作者:Jayaraman Arul, Maguire Tim, Vemula Murali, Kwon Deukwoo W, Vannucci Marina, Berthiaume Francois, Yarmush Martin L
| 期刊: | Journal of Surgical Research | 影响因子: | 1.700 |
| 时间: | 2009 | 起止号: | 2009 Mar;152(1):3-17,17.e1-2 |
| doi: | 10.1016/j.jss.2007.05.025 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
