High cardiorespiratory fitness and exercise show evidence of altering bile acid (BA) metabolism and are known to protect or treat diet-induced hepatic steatosis, respectively. Here, we tested the hypothesis that high intrinsic aerobic capacity and exercise both increase hepatic BA synthesis measured by the incorporation of 2H2O. We also leveraged mice with inducible liver-specific deletion of Cyp7a1 (LCyp7a1KO), which encodes the rate-limiting enzyme for BA synthesis, to test if exercise-induced BA synthesis is critical for exercise to reduce hepatic steatosis. The synthesis of hepatic BA, cholesterol, and de novo lipogenesis was measured in rats bred for either high (HCR) or low (LCR) aerobic capacity consuming acute and chronic high-fat diets. HCR rats had increased synthesis of cholesterol and certain BA species in the liver compared to LCR rats. We also found that chronic exercise with voluntary wheel running (VWR) (4 weeks) increased newly synthesized BAs of specific species in male C57BL/6J mice compared to sedentary mice. Loss of Cyp7a1 resulted in fewer new BAs and increased liver triglycerides compared to controls after a 10-week high-fat diet. Additionally, exercise via VWR for 4 weeks effectively reduced hepatic triglycerides in the high-fat diet-fed control male and female mice as expected; however, exercise in LCyp7a1KO mice did not lower liver triglycerides in either sex. These results show that aerobic capacity and exercise increase hepatic BA metabolism, which may be critical for combatting hepatic steatosis.
Aerobic Capacity and Exercise Mediate Protection Against Hepatic Steatosis via Enhanced Bile Acid Metabolism.
阅读:5
作者:Kugler Benjamin A, Maurer Adrianna, Fu Xiaorong, Franczak Edziu, Ernst Nick, Schwartze Kevin, Allen Julie, Li Tiangang, Crawford Peter A, Koch Lauren G, Britton Steven L, Shankar Kartik, Burgess Shawn C, Thyfault John P
| 期刊: | Function | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 May 19; 6(3):zqaf019 |
| doi: | 10.1093/function/zqaf019 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
