An ensemble framework for time delay synchronization.

阅读:6
作者:Pinheiro Flavia R, van Leeuwen Peter Jan, Parlitz Ulrich
Synchronization based state estimation tries to synchronize a model with the true evolution of a system via the observations. In practice, an extra term is added to the model equations which hampers growth of instabilities transversal to the synchronization manifold. Therefore, there is a very close connection between synchronization and data assimilation. Recently, synchronization with time-delayed observations has been proposed, in which observations at future times are used to help synchronize a system that does not synchronize using only present observations, with remarkable successes. Unfortunately, these schemes are limited to small-dimensional problems. In this article, we lift that restriction by proposing an ensemble-based synchronization scheme. Tests were performed using the Lorenz'96 model for 20-, 100- and 1000-dimension systems. Results show global synchronization errors stabilizing at values of at least an order of magnitude lower than the observation errors, suggesting that the scheme is a promising tool to steer model states to the truth. While this framework is not a complete data assimilation method, we develop this methodology as a potential choice for a proposal density in a more comprehensive data assimilation method, like a fully nonlinear particle filter.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。