Shear Stress Counteracts Endothelial CX3CL1 Induction and Monocytic Cell Adhesion

剪切应力抵消内皮 CX3CL1 诱导和单核细胞粘附

阅读:7
作者:Aaron Babendreyer, Lisa Molls, Daniela Dreymueller, Stefan Uhlig, Andreas Ludwig

Abstract

Flow conditions critically regulate endothelial cell functions in the vasculature. Reduced shear stress resulting from disturbed blood flow can drive the development of vascular inflammatory lesions. On endothelial cells, the transmembrane chemokine CX3CL1/fractalkine promotes vascular inflammation by functioning as a surface-expressed adhesion molecule and by becoming released as soluble chemoattractant for monocytic cells expressing the receptor CX3CR1. Here, we report that endothelial cells from human artery, vein, or microvasculature constitutively express CX3CL1 when cultured under static conditions. Stimulation with TNFα under static or very low shear stress conditions strongly upregulates CX3CL1 expression. By contrast, CX3CL1 induction is profoundly reduced when cells are exposed to higher shear stress. When endothelial cells were grown and subsequently stimulated with TNFα under low shear stress, strong adhesion of monocytic THP-1 cells to endothelial cells was observed. This adhesion was in part mediated by transmembrane CX3CL1 as demonstrated with a neutralizing antibody. By contrast, no CX3CL1-dependent adhesion to stimulated endothelium was observed at high shear stress. Thus, during early stages of vascular inflammation, low shear stress typically seen at atherosclerosis-prone regions promotes the induction of endothelial CX3CL1 and monocytic cell recruitment, whereas physiological shear stress counteracts this inflammatory activation of endothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。