In biomedical research such as the development of vaccines for infectious diseases or cancer, study outcomes measured by an assay or device are often collected from multiple sources or laboratories. Measurement error that may vary between laboratories needs to be adjusted for when combining samples across data sources. We incorporate such adjustment in the main study by comparing and combining independent samples from different laboratories via integration of external data, collected on paired samples from the same two laboratories. We propose the following: (i) normalization of individual-level data from two laboratories to the same scale via the expectation of true measurements conditioning on the observed; (ii) comparison of mean assay values between two independent samples in the main study accounting for inter-source measurement error; and (iii) sample size calculations of the paired-sample study so that hypothesis testing error rates are appropriately controlled in the main study comparison. Because the goal is not to estimate the true underlying measurements but to combine data on the same scale, our proposed methods do not require that the true values for the error-prone measurements are known in the external data. Simulation results under a variety of scenarios demonstrate satisfactory finite sample performance of our proposed methods when measurement errors vary. We illustrate our methods using real enzyme-linked immunosorbent spot assay data generated by two HIV vaccine laboratories.
Comparing and combining data across multiple sources via integration of paired-sample data to correct for measurement error.
阅读:4
作者:Huang Yunda, Huang Ying, Moodie Zoe, Li Sue, Self Steve
| 期刊: | Statistics in Medicine | 影响因子: | 1.800 |
| 时间: | 2012 | 起止号: | 2012 Dec 10; 31(28):3748-59 |
| doi: | 10.1002/sim.5446 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
