An improved gray wolf optimization algorithm solving to functional optimization and engineering design problems.

阅读:3
作者:Qiu Yihui, Yang Xiaoxiao, Chen Shuixuan
As a newly proposed optimization algorithm based on the social hierarchy and hunting behavior of gray wolves, grey wolf algorithm (GWO) has gradually become a popular method for solving the optimization problems in various engineering fields. In order to further improve the convergence speed, solution accuracy, and local minima escaping ability of the traditional GWO algorithm, this work proposes a multi-strategy fusion improved gray wolf optimization (IGWO) algorithm. First, the initial population is optimized using the lens imaging reverse learning algorithm for laying the foundation for global search. Second, a nonlinear control parameter convergence strategy based on cosine variation is proposed to coordinate the global exploration and local exploitation ability of the algorithm. Finally, inspired by the tunicate swarm algorithm (TSA) and the particle swarm algorithm (PSO), a nonlinear tuning strategy for the parameters, and a correction based on the individual historical optimal positions and the global optimal positions are added in the position update equations to speed up the convergence of the algorithm. The proposed algorithm is assessed using 23 benchmark test problems, 15 CEC2014 test problems, and 2 well-known constraint engineering problems. The results show that the proposed IGWO has a balanced E&P capability in coping with global optimization as analyzed by the Wilcoxon rank sum and Friedman tests, and has a clear advantage over other state-of-the-art algorithms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。