Genome-wide association study between SARS-CoV-2 single nucleotide polymorphisms and virus copies during infections.

阅读:5
作者:Li Ke, Chaguza Chrispin, Stamp Julian, Chew Yi Ting, Chen Nicholas F G, Ferguson David, Pandya Sameer, Kerantzas Nick, Schulz Wade, Hahn Anne M, Ogbunugafor C Brandon, Pitzer Virginia E, Crawford Lorin, Weinberger Daniel M, Grubaugh Nathan D
Significant variations have been observed in viral copies generated during SARS-CoV-2 infections. However, the factors that impact viral copies and infection dynamics are not fully understood, and may be inherently dependent upon different viral and host factors. Here, we conducted virus whole genome sequencing and measured viral copies using RT-qPCR from 9,902 SARS-CoV-2 infections over a 2-year period to examine the impact of virus genetic variation on changes in viral copies adjusted for host age and vaccination status. Using a genome-wide association study (GWAS) approach, we identified multiple single-nucleotide polymorphisms (SNPs) corresponding to amino acid changes in the SARS-CoV-2 genome associated with variations in viral copies. We further applied a marginal epistasis test to detect interactions among SNPs and identified multiple pairs of substitutions located in the spike gene that have non-linear effects on viral copies. We also analyzed the temporal patterns and found that SNPs associated with increased viral copies were predominantly observed in Delta and Omicron BA.2/BA.4/BA.5/XBB infections, whereas those associated with decreased viral copies were only observed in infections with Omicron BA.1 variants. Our work showcases how GWAS can be a useful tool for probing phenotypes related to SNPs in viral genomes that are worth further exploration. We argue that this approach can be used more broadly across pathogens to characterize emerging variants and monitor therapeutic interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。