New Schiff base ligand and its novel Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) complexes: spectral investigation, biological applications, and semiconducting properties.

阅读:5
作者:El-Ghamry Mosad A, Elzawawi Fatma M, Aziz Ayman A Abdel, Nassir Khadija M, Abu-El-Wafa Samy M
New Schiff base ligand, derived from antiviral valacyclovir, and its novel Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) complexes have been synthesized. By using a variety of analytical and spectroscopic techniques, the type of bonding between the ligand and the metal ions in the recently formed complexes was clarified. The Schiff base ligand act as a bidentate and coordinated with the metal ions through the azomethine-N and the phenolic-O centers, in a mono-deprotonated form. Except for the Zn(II) complex, which displayed a tetrahedral geometry, all complexes displayed octahedral geometry. The TGA findings supported that the stability and decomposition properties of the metal complexes were entirely distinct from one another. The thermogram showed decomposition of all investigated metal complexes above 200 °C in three, four or five steps, and indicated the high thermal stability of these complexes. According to XRD patterns, the particles of these complexes were located at the nanoscale. Moreover, for all the samples analyzed, the TEM images showed uniform and homogeneous surface morphology. The biological activity revealing the high efficiencies of the screened complexes as antibacterial and antitumor agents. The antimicrobial activity of the ligand and its complexes was examined against a variety of pathogenic bacteria and fungi including Escherichia coli, Staphylococcus aureus and Candida albicans. The data obtained revealed that the metal ion in the complexes enhanced the antimicrobial activity compared to the free ligand. The high efficiencies toward S. aureus, E. coli, and C. albicans appeared by Cu(II) complex 23, Ni(II) complex 20, and Ni(II) complex 19, respectively. The antitumor activity of the ligand and its complexes was tested against Hepatocellular carcinoma cell line (HepG-2 cells), the residue 28 which produced after heating the Cu(II) complex 25 at 200 °C for 1 h, exhibited strong inhibition of HepG-2 cell growth. The results of the DNA cleavage investigation demonstrated the ability of investigated Cu(II) complex to degrade DNA. The docking findings showed strong interactions of both the ligand and its examined Cu(II) complex, revealing their ability to cleavage DNA and their potent inhibitory effects on tumor cells. The electrical conductivity study confirmed that the ligand and its investigated complexes had semiconducting properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。