Thermoelectric characteristics of X[Formula: see text]YH[Formula: see text] monolayers (X=Si, Ge; Y=P, As, Sb, Bi): a first-principles study.

阅读:7
作者:Mohebpour Mohammad Ali, Mozvashi Shobair Mohammadi, Vishkayi Sahar Izadi, Tagani Meysam Bagheri
Ever since global warming emerged as a serious issue, the development of promising thermoelectric materials has been one of the main hot topics of material science. In this work, we provide an in-depth understanding of the thermoelectric properties of X[Formula: see text]YH[Formula: see text] monolayers (X=Si, Ge; Y=P, As, Sb, Bi) using the density functional theory combined with the Boltzmann transport equation. The results indicate that the monolayers have very low lattice thermal conductivities in the range of 0.09-0.27 Wm[Formula: see text]K[Formula: see text] at room temperature, which are correlated with the atomic masses of primitive cells. Ge[Formula: see text]PH[Formula: see text] and Si[Formula: see text]SbH[Formula: see text] possess the highest mobilities for hole (1894 cm[Formula: see text]V[Formula: see text]s[Formula: see text]) and electron (1629 cm[Formula: see text]V[Formula: see text]s[Formula: see text]), respectively. Si[Formula: see text]BiH[Formula: see text] shows the largest room-temperature figure of merit, [Formula: see text] in the n-type doping ( [Formula: see text] cm[Formula: see text]), which is predicted to reach 3.49 at 800 K. Additionally, Si[Formula: see text]SbH[Formula: see text] and Si[Formula: see text]AsH[Formula: see text] are found to have considerable ZT values above 2 at room temperature. Our findings suggest that the mentioned monolayers are more efficient than the traditional thermoelectric materials such as Bi[Formula: see text]Te[Formula: see text] and stimulate experimental efforts for novel syntheses and applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。