The adsorption of carboxylic acid molecules at the calcite (104) and the muscovite (001) surface was investigated using surface X-ray diffraction. All four investigated carboxylic acid molecules, hexanoic acid, octanoic acid, lauric acid, and stearic acid, were found to adsorb at the calcite surface. Whereas the shortest two carboxylic acid molecules, hexanoic acid and octanoic acid, showed limited ordering and a flexible, disordered chain, the two longest carboxylic acid molecules form fully ordered monolayers, i.e., these form highly structured self-assembled monolayers. The latter molecules are oriented almost fully upright, with a tilt of up to 10°. The oxygen atoms of the organic molecules are found at similar positions to those of water molecules at the calcite-water interface. This suggests that in both cases, the oxygen atoms compensate for the broken bonds at the calcite surface. Under the same experimental conditions, stearic acid does not adsorb to K(+) and Ca(2+)-functionalized muscovite mica because the neutral molecules do not engage in the ionic bonds typical for the mica interface. These differences in adsorption behavior are characteristic for the differences of the oil-solid interactions in carbonate and sandstone reservoirs.
Ordered and Disordered Carboxylic Acid Monolayers on Calcite (104) and Muscovite (001) Surfaces.
阅读:3
作者:Brugman Sander J T, Accordini Paolo, Megens Frank, Devogelaer Jan-Joris, Vlieg Elias
| 期刊: | Journal of Physical Chemistry C | 影响因子: | 3.200 |
| 时间: | 2022 | 起止号: | 2022 May 26; 126(20):8855-8862 |
| doi: | 10.1021/acs.jpcc.2c01157 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
