Selective and feasible reactions are among the top targets in synthesis planning. Mayr's approach to quantifying chemical reactivity has greatly facilitated the planning process, but reactivity parameters for new compounds require time-consuming experiments. In the past decade, data-driven modeling has been gaining momentum in the field, as it shows promise in terms of efficient reactivity prediction. However, state-of-the-art models use quantum chemical data as input, which prevent access to real-time planning in organic synthesis. Here, we present a novel data-driven workflow for predicting reactivity parameters of molecules that takes only structural information as input, enabling de facto real-time reactivity predictions. We use the well-understood chemical space of benzhydrylium ions as an example to demonstrate the functionality of our approach and the performance of the resulting quantitative structure-reactivity relationships (QSRRs). Our results suggest that it is straightforward to build low-cost QSRR models that are accurate, interpretable, and transferable to unexplored systems within a given scope of application. Moreover, our QSRR approach suggests that Hammett Ï parameters are only approximately additive.
Quantitative Structure-Reactivity Relationships for Synthesis Planning: The Benzhydrylium Case.
阅读:4
作者:Eckhoff Maike, Diedrich Johannes V, Mücke Maike, Proppe Jonny
| 期刊: | Journal of Physical Chemistry A | 影响因子: | 2.800 |
| 时间: | 2024 | 起止号: | 2024 Jan 11; 128(1):343-354 |
| doi: | 10.1021/acs.jpca.3c07289 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
