Multi-walled carbon nanotubes with excellent electrical properties and high aspect ratios can reduce the high field strength required to kill cancer cells in vitro with nanosecond pulsed electric fields. For the first time, this article systematically and comprehensively evaluates the effects of various parameters of nanosecond pulsed electric fields combined with multi-walled carbon nanotubes on cell viability. The effects of field strength, E (2-10 kV/cm); pulse width, Ï (100-500 ns); and pulse number, N (5-260) on the viability of A375 human skin cancer cells in the presence of multi-walled carbon nanotubes are studied using the Cell Counting Kit 8 assay. Based on a logistic model, the relationship between cell viability and various parameters is obtained using 1-dimensional nonlinear fitting. The results show a sigmoid-type variation in cell viability with field strength, pulse width, or pulse number. Multivariate scaling analysis shows that the relationship between cell viability and the pulse energy density ÏE(2)ÏN can be described as a sigmoid type. The introduction of multi-walled carbon nanotubes does not affect the above rules but significantly enhances the killing effect of nanosecond pulsed electric fields, which could effectively improve the electrical safety of nanosecond pulsed electric fields for the treatment of tumors.
Multi-Parametric Study of the Viability of in Vitro Skin Cancer Cells Exposed to Nanosecond Pulsed Electric Fields Combined With Multi-Walled Carbon Nanotubes.
阅读:14
作者:Mi Yan, Li Pan, Liu Quan, Xu Jin, Yang Qiyu, Tang Junying
| 期刊: | Technology in Cancer Research & Treatment | 影响因子: | 2.800 |
| 时间: | 2019 | 起止号: | 2019 Jan 1; 18:1533033819876918 |
| doi: | 10.1177/1533033819876918 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
