On evaluating the efficiency of the delta-lognormal mean estimator and predictor.

阅读:4
作者:Aubry, Philippe
A variable taking positive values from a lognormal distribution and null values with a given probability is distributed according to the so-called delta-lognormal distribution. Two situations arise depending on whether the data are regarded as a random sample from an infinite population (superpopulation) or from a finite population, itself considered as a random sample from a superpopulation. In the case of an infinite population, estimating the mean can be accomplished using a uniformly minimum-variance unbiased estimator (UMVUE). Likewise, the prediction of the mean in the case of a finite population may be based on the UMVUE. In both cases, one expects a gain in precision when taking into account the shape of the distribution by relying on the UMVUE rather than on the sample mean, which is a nonparametric estimator (or predictor).1.For the infinite population case, the relative efficiency results presented in this article are more complete and more accurate than those published so far.2.The article fills a gap regarding the question of relative efficiency in the case of a finite population.3.Calculations were performed using the exact expression for the variance of the UMVUE of the mean, expressed in terms of the confluent hypergeometric limit function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。