BACKGROUND: Synthetic data have been proposed as a solution for sharing anonymized versions of sensitive biomedical datasets. Ideally, synthetic data should preserve the structure and statistical properties of the original data, while protecting the privacy of the individual subjects. Differential Privacy (DP) is currently considered the gold standard approach for balancing this trade-off. OBJECTIVES: The aim of this study is to investigate how trustworthy are group differences discovered by independent sample tests from DP-synthetic data. The evaluation is carried out in terms of the tests' Type I and Type II errors. With the former, we can quantify the tests' validity, i.e., whether the probability of false discoveries is indeed below the significance level, and the latter indicates the tests' power in making real discoveries. METHODS: We evaluate the Mann-Whitney U test, Student's t-test, chi-squared test, and median test on DP-synthetic data. The private synthetic datasets are generated from real-world data, including a prostate cancer dataset (nâ=â500) and a cardiovascular dataset (nâ=â70,000), as well as on bivariate and multivariate simulated data. Five different DP-synthetic data generation methods are evaluated, including two basic DP histogram release methods and MWEM, Private-PGM, and DP GAN algorithms. CONCLUSION: A large portion of the evaluation results expressed dramatically inflated Type I errors, especially at levels of ϵââ¤â1. This result calls for caution when releasing and analyzing DP-synthetic data: low p-values may be obtained in statistical tests simply as a byproduct of the noise added to protect privacy. A DP Smoothed Histogram-based synthetic data generation method was shown to produce valid Type I error for all privacy levels tested but required a large original dataset size and a modest privacy budget (ϵââ¥â5) in order to have reasonable Type II error levels.
Does Differentially Private Synthetic Data Lead to Synthetic Discoveries?
阅读:4
作者:Montoya Perez Ileana, Movahedi Parisa, Nieminen Valtteri, Airola Antti, Pahikkala Tapio
| 期刊: | Methods of Information in Medicine | 影响因子: | 1.800 |
| 时间: | 2024 | 起止号: | 2024 May;63(1-02):35-51 |
| doi: | 10.1055/a-2385-1355 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
