An Opposition-Based Learning CRO Algorithm for Solving the Shortest Common Supersequence Problem.

阅读:4
作者:Luo Fei, Chen Cheng, Fuentes Joel, Li Yong, Ding Weichao
As a non-deterministic polynomial hard (NP-hard) problem, the shortest common supersequence (SCS) problem is normally solved by heuristic or metaheuristic algorithms. One type of metaheuristic algorithms that has relatively good performance for solving SCS problems is the chemical reaction optimization (CRO) algorithm. Several CRO-based proposals exist; however, they face such problems as unstable molecular population quality, uneven distribution, and local optimum (premature) solutions. To overcome these problems, we propose a new approach for the search mechanism of CRO-based algorithms. It combines the opposition-based learning (OBL) mechanism with the previously studied improved chemical reaction optimization (IMCRO) algorithm. This upgraded version is dubbed OBLIMCRO. In its initialization phase, the opposite population is constructed from a random population based on OBL; then, the initial population is generated by selecting molecules with the lowest potential energy from the random and opposite populations. In the iterative phase, reaction operators create new molecules, where the final population update is performed. Experiments show that the average running time of OBLIMCRO is more than 50% less than the average running time of CRO_SCS and its baseline algorithm, IMCRO, for the desoxyribonucleic acid (DNA) and protein datasets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。