Of the past decade, micro/nanoplastics (MP/NP) and per- and polyfluoroalkyl substances (PFAS) have become two of the most pervasive persistent organic pollutants leading to significant accumulation within waterways. Various sorbent materials have been evaluated for PFAS and MP/NP removal, but their simultaneous removal has rarely been explored. Herein, we report a library of polymer-based, cationic nanoparticle networks (CNN) with systematic variation in surface charge density, polymer molecular weight, and nanoparticle size for the removal of anionic MP/NP and PFAS from aqueous solutions. These materials are synthesized in three, one-pot steps starting with polymerization-induced self-assembly (PISA) followed by rapid photocuring and quaternary ammonium salt formation resulting in 3D networks consisting solely of cationic polymer nanoparticles. Our best performing CNN material demonstrated record-high MP removal capacities of Q(max) = 1865 mg/g and K(F) = 58.0 (mg/g)(L/mg)(1/n) based on Langmuir and Freundlich isotherm model estimations, respectively. Furthermore, the CNN materials demonstrated efficient removal of NPs and MPs in complex water media, such as in seawater and at different pH values, demonstrating the overall material applicability. Finally, simultaneous and efficient removal of MPs and perfluorooctanoic acid (PFOA) was accomplished with similar Q(max) (MP) = 478.4 mg/g and Q(max) (PFOA) = 134.6 mg/g allowing for dual use.
Cationic Nanoparticle Networks (CNNs) with Remarkably Efficient, Simultaneous Adsorption of Microplastics and PFAS.
阅读:3
作者:Tafazoli Shayesteh, Shuster Dylan B, Shahrokhinia Ali, Rijal Sahaj, Ruhamya Dorcas M, Dubray Kamryn A, Morefield David J, Reuther James F
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 Feb 19; 17(7):10732-10744 |
| doi: | 10.1021/acsami.4c21249 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
