A Numerical Model for Predicting the Effect of Tool Nose Radius on Machining Process Performance during Orthogonal Cutting of AISI 1045 Steel.

阅读:9
作者:Tagiuri Zakaria Ahmed M, Dao Thien-My, Samuel Agnes Marie, Songmene Victor
This paper presents the development of a numerical model for predicting and studying the effects of tool nose geometries and its interactions with cutting parameters during orthogonal cutting of AISI 1045 steel. The process performance characteristics studied were cutting temperature, effective stress, cutting forces and tool wear. The cutting simulations were done using the commercial DEFORM-2D (R) V 11.3 software, based on the finite element method (FEM). The cutting tool used had a round nose with various nose radii (0.01-0.9 mm), while the machining parameters tested were the feed rate (0.1-0.3 mm/rev), the cutting speed (100-500 m/min) and the rake angle (-5° to +10°). The interactions between the tool nose radius and the cutting parameters (speed, feed) were found to affect mostly the cutting stress and, slightly, the tool wear rate. These interactions did not much influence the cutting temperature, that was found to be high when the tool nose radius and/or the cutting speed were high. The maximum temperature was found to occur at the middle of the tool-chip contact length and at the interaction of nose radius and flank face of the tool. Except for some fluctuations, there was no significant difference in tool wear rate between small and large nose radius scales.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。