The direct estimation techniques in small area estimation (SAE) models require sufficiently large sample sizes to provide accurate estimates. Hence, indirect model-based methodologies are developed to incorporate auxiliary information. The most commonly used SAE models, including the Fay-Herriot (FH) model and its extended models, are estimated using marginal likelihood estimation and the Bayesian methods, which rely heavily on the computationally intensive integration of likelihood function. In this article, we propose a Calibrated Hierarchical (CH) likelihood approach to obtain SAE through hierarchical estimation of fixed effects and random effects with the regression calibration method for bias correction. The latent random variables at the domain level are treated as 'parameters' and estimated jointly with other parameters of interest. Then the dispersion parameters are estimated iteratively based on the Laplace approximation of the profile likelihood. The proposed method avoids the intractable integration to estimate the marginal distribution. Hence, it can be applied to a wide class of distributions, including generalized linear mixed models, survival analysis, and joint modeling with distinct distributions. We demonstrate our method using an area-level analysis of publicly available count data from the novel coronavirus (COVID-19) positive cases.
A general class of small area estimation using calibrated hierarchical likelihood approach with applications to COVID-19 data.
阅读:4
作者:Rathnayake Nirosha, Dai Hongying Daisy, Charnigo Richard, Schmid Kendra, Meza Jane
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2022 Oct 1; 50(16):3384-3404 |
| doi: | 10.1080/02664763.2022.2112556 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
