Birnbaum-Saunders sample selection model.

阅读:3
作者:Bastos Fernando de Souza, Barreto-Souza Wagner
The sample selection bias problem occurs when the outcome of interest is only observed according to some selection rule, where there is a dependence structure between the outcome and the selection rule. In a pioneering work, J. Heckman proposed a sample selection model based on a bivariate normal distribution for dealing with this problem. Due to the non-robustness of the normal distribution, many alternatives have been introduced in the literature by assuming extensions of the normal distribution like the Student-t and skew-normal models. One common limitation of the existent sample selection models is that they require a transformation of the outcome of interest, which is common R+ -valued, such as income and wage. With this, data are analyzed on a non-original scale which complicates the interpretation of the parameters. In this paper, we propose a sample selection model based on the bivariate Birnbaum-Saunders distribution, which has the same number of parameters that the classical Heckman model. Further, our associated outcome equation is R+ -valued. We discuss estimation by maximum likelihood and present some Monte Carlo simulation studies. An empirical application to the ambulatory expenditures data from the 2001 Medical Expenditure Panel Survey is presented.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。