In this paper, spatial velocity distributions in pulse-wave propagation based on a fluid-structure interaction model are presented. The investigation is performed using the assumption of laminar flow and a linear-elastic wall. The fluid-structure interaction scheme is constructed using the finite element method. The results show that velocity distributions embody an obvious time delay in an elastic tube model. Further, the fully developed flow is delayed and the velocity values are increased in comparison with a rigid tube model. The increase in the wall thickness makes the time delay between the velocity peaks of different sites smaller while the time delay between the velocity minima is unchanged. Similarly, the time delay between the velocity bottoms is more easily found when decreasing the internal radius. The model gives valid results for spatial velocity distributions, which provide important information for wave propagation.
Spatial velocity distributions in pulse-wave propagation based on fluid-structure interaction.
阅读:6
作者:He Fan, Hua Lu, Gao Li-Jian
| 期刊: | Journal of Biological Physics | 影响因子: | 2.200 |
| 时间: | 2014 | 起止号: | 2014 Sep;40(4):325-34 |
| doi: | 10.1007/s10867-014-9351-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
