A Bayesian approach to the analysis of dose-response data: estimating natural survivorship without Abbott's correction and inclusion of overdispersion estimates.

阅读:11
作者:Caprio Michael A, Malaquias Jose B, Reisig Dominic
We assessed the utility of a Bayesian analysis of dose-mortality curves using probit analysis. A Bayesian equivalent of a conventional single population probit analysis using Abbott's correction demonstrated the ability of the Bayesian model to recover parameters from generative data. We then developed a model that removed Abbott's correction and estimated natural survivorship as part of the overall model fitting process. Based on WAIC (information content) scores, this model was selected over the model using Abbott's corrected data in 196 out of 200 randomly generated datasets. This suggests that considerable information on control survivorship exists in response to treated doses in a bioassay, information that is partially removed when using Abbott's correction. Overdispersion in count data is common in ecological data, and a final model was developed that estimated overdispersion (kappa) as part of the model fitting process. When this model was compared to a model without overdispersion, it was selected as the best model in all 200 randomly generated datasets when kappa was low (5-20, high levels of overdispersion), while the 2 models performed equally well when kappa was large (500-2,000, low levels of overdispersion). The model with overdispersion was used to estimate parameters from bioassays of 10 populations of Helicoverpa zea (Lepidoptera: Noctuidae) exposed to Vip3a toxin, identifying 26 out of 45 pairwise comparisons that showed strong evidence of differences in LC50 estimates, adjusted for multiple comparisons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。