Ultra-high performance wearable thermoelectric coolers with less materials.

阅读:5
作者:Kishore Ravi Anant, Nozariasbmarz Amin, Poudel Bed, Sanghadasa Mohan, Priya Shashank
Thermoelectric coolers are attracting significant attention for replacing age-old cooling and refrigeration devices. Localized cooling by wearable thermoelectric coolers will decrease the usage of traditional systems, thereby reducing global warming and providing savings on energy costs. Since human skin as well as ambient air is a poor conductor of heat, wearable thermoelectric coolers operate under huge thermally resistive environment. The external thermal resistances greatly influence thermoelectric material behavior, device design, and device performance, which presents a fundamental challenge in achieving high efficiency for on-body applications. Here, we examine the combined effect of heat source/sink thermal resistances and thermoelectric material properties on thermoelectric cooler performance. Efficient thermoelectric coolers demonstrated here can cool the human skin up to 8.2 °C below the ambient temperature (170% higher cooling than commercial modules). Cost-benefit analysis shows that cooling over material volume for our optimized thermoelectric cooler is 500% higher than that of the commercial modules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。