Plastics have become an integral part of modern life, and linked to that fact, the demand for and global production of plastics are still increasing. However, the environmental pollution caused by plastics has reached unprecedented levels. The accumulation of small plastic fragments-microplastics and nanoplastics-potentially threatens organisms, ecosystems, and human health. Researchers commonly employ non-destructive analytical methods to assess the presence and characteristics of microplastic particles in environmental samples. However, these techniques require extensive sample preparation, which represents a significant limitation and hinders a direct on-site analysis. In this context, previous investigations showed the potential of fluorescence lifetime imaging microscopy (FLIM) for fast and reliable identification of microplastics in an environmental matrix. However, since microplastics receive an environmental coating after entering nature, a challenge arises from organic contamination on the surface of microplastic particles. How this influences the fluorescence signal and the possibility of microplastic detection are unknown. To address this research gap, we exposed acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate (PET) plastic samples to peptides, proteins, bacteria, and a filamentous fungus to induce organic contamination and mimic environmental conditions. We analyzed the fluorescence spectra and lifetimes of the samples using fluorescence spectroscopy and frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM), respectively. Our results demonstrate that reliably identifying and differentiating ABS and PET was possible via FD-FLIM, even in the presence of these biological contaminations. These findings highlight the potential of this technique as a valuable tool for environmental monitoring and plastic characterization, offering a rapid and efficient alternative to currently used analytical methods.
Effects of defined organic layers on the fluorescence lifetime of plastic materials.
阅读:24
作者:Leiter Nina, Wohlschläger Maximilian, Versen Martin, Harter Sonja D, KieÃlich Tina, Lederer Franziska, Clauà Stefanie, Schlosser Dietmar, Armanu Emanuel Gheorghita, Eberlein Christian, Heipieper Hermann J, Löder Martin G J, Laforsch Christian
| 期刊: | Analytical and Bioanalytical Chemistry | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Jul;417(16):3651-3663 |
| doi: | 10.1007/s00216-025-05888-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
