Bayesian additive regression trees (BART) is a flexible prediction model/machine learning approach that has gained widespread popularity in recent years. As BART becomes more mainstream, there is an increased need for a paper that walks readers through the details of BART, from what it is to why it works. This tutorial is aimed at providing such a resource. In addition to explaining the different components of BART using simple examples, we also discuss a framework, the General BART model that unifies some of the recent BART extensions, including semiparametric models, correlated outcomes, and statistical matching problems in surveys, and models with weaker distributional assumptions. By showing how these models fit into a single framework, we hope to demonstrate a simple way of applying BART to research problems that go beyond the original independent continuous or binary outcomes framework.
Bayesian additive regression trees and the General BART model.
阅读:4
作者:Tan Yaoyuan Vincent, Roy Jason
| 期刊: | Statistics in Medicine | 影响因子: | 1.800 |
| 时间: | 2019 | 起止号: | 2019 Nov 10; 38(25):5048-5069 |
| doi: | 10.1002/sim.8347 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
