The chemical structure and photoredox properties of carbon dots (CDs) are not yet fully understood. However, it has been reported that, by carefully choosing the starting materials and tuning their synthesis conditions, it is possible to obtain CDs with different chemical structures and therefore different photocatalytic performance. For this work, a family of different CDs was synthesized in Milli-Q water via a microwave-assisted protocol, using citric acid and urea as precursors. The syntheses were carried out at different times and temperatures to assess the impact of the synthetic parameters on the photocatalytic properties of the final materials. After extensive and accurate purification, the photocatalytic abilities of a selected subset of CDs were tested by performing a photocatalyzed atom transfer radical addition reaction. Among the tested CDs, the best performing ones were found to be those synthesized at the highest temperature, which were the most graphitic. A number of different characterization techniques were then used to evaluate the degree of graphitization of CDs and to elucidate the origin of their different photocatalytic performance.
Structure Matters: Tailored Graphitization of Carbon Dots Enhances Photocatalytic Performance.
阅读:4
作者:Morbiato Laura, Cardo Lucia, Sturabotti Elisa, Gobbo Pierangelo, Filippini Giacomo, Prato Maurizio
| 期刊: | ACS Nano | 影响因子: | 16.000 |
| 时间: | 2025 | 起止号: | 2025 Feb 4; 19(4):4887-4900 |
| doi: | 10.1021/acsnano.4c16538 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
