A Hybrid Method for Density Power Divergence Minimization with Application to Robust Univariate Location and Scale Estimation.

阅读:5
作者:Anum Andrews T, Pokojovy Michael
We develop a new globally convergent optimization method for solving a constrained minimization problem underlying the minimum density power divergence estimator for univariate Gaussian data in the presence of outliers. Our hybrid procedure combines classical Newton's method with a gradient descent iteration equipped with a step control mechanism based on Armijo's rule to ensure global convergence. Extensive simulations comparing the resulting estimation procedure with the more prominent robust competitor, Minimum Covariance Determinant (MCD) estimator, across a wide range of breakdown point values suggest improved efficiency of our method. Application to estimation and inference for a real-world dataset is also given.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。