Radiation Induces Apoptosis and Osteogenic Impairment through miR-22-Mediated Intracellular Oxidative Stress in Bone Marrow Mesenchymal Stem Cells.

阅读:4
作者:Liu Zhonglong, Li Tao, Deng Si'nan, Fu Shuiting, Zhou Xiaojun, He Yue
Bone marrow mesenchymal stem cells (BMSCs) were characterized by their multilineage potential and were involved in both bony and soft tissue repair. Exposure of cells to ionizing radiation (IR) triggers numerous biological reactions, including reactive oxygen species (ROS), cellular apoptosis, and impaired differentiation capacity, while the mechanisms of IR-induced BMSC apoptosis and osteogenic impairment are still unclear. Through a recent study, we found that 6 Gy IR significantly increased the apoptotic ratio and ROS generation, characterized by ROS staining and mean fluorescent intensity. Intervention with antioxidant (NAC) indicated that IR-induced cellular apoptosis was partly due to the accumulation of intracellular ROS. Furthermore, we found that the upregulation of miR-22 in rBMSCs following 6 Gy IR played an important role on the ROS generation and subsequent apoptosis. In addition, we firstly demonstrated that miR-22-mediated ROS accumulation and cell injury had an important regulated role on the osteogenic capacity of BMSCs both in vitro and in vivo. In conclusion, IR-induced overexpression of miR-22 regulated the cell viability and differentiation potential through targeting the intracellular ROS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。