A Bayesian multivariate meta-analysis of prevalence data.

阅读:3
作者:Siegel Lianne, Rudser Kyle, Sutcliffe Siobhan, Markland Alayne, Brubaker Linda, Gahagan Sheila, Stapleton Ann E, Chu Haitao
When conducting a meta-analysis involving prevalence data for an outcome with several subtypes, each of them is typically analyzed separately using a univariate meta-analysis model. Recently, multivariate meta-analysis models have been shown to correspond to a decrease in bias and variance for multiple correlated outcomes compared with univariate meta-analysis, when some studies only report a subset of the outcomes. In this article, we propose a novel Bayesian multivariate random effects model to account for the natural constraint that the prevalence of any given subtype cannot be larger than that of the overall prevalence. Extensive simulation studies show that this new model can reduce bias and variance when estimating subtype prevalences in the presence of missing data, compared with standard univariate and multivariate random effects models. The data from a rapid review on occupation and lower urinary tract symptoms by the Prevention of Lower Urinary Tract Symptoms Research Consortium are analyzed as a case study to estimate the prevalence of urinary incontinence and several incontinence subtypes among women in suspected high risk work environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。