Adaptive kernel scaling support vector machine with application to a prostate cancer image study.

阅读:3
作者:Liu Xin, He Wenqing
The support vector machine (SVM) is a popularly used classifier in applications such as pattern recognition, texture mining and image retrieval owing to its flexibility and interpretability. However, its performance deteriorates when the response classes are imbalanced. To enhance the performance of the support vector machine classifier in the imbalanced cases we investigate a new two stage method by adaptively scaling the kernel function. Based on the information obtained from the standard SVM in the first stage, we conformally rescale the kernel function in a data adaptive fashion in the second stage so that the separation between two classes can be effectively enlarged with incorporation of observation imbalance. The proposed method takes into account the location of the support vectors in the feature space, therefore is especially appealing when the response classes are imbalanced. The resulting algorithm can efficiently improve the classification accuracy, which is confirmed by intensive numerical studies as well as a real prostate cancer imaging data application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。