ALADDIN: Docking Approach Augmented by Machine Learning for Protein Structure Selection Yields Superior Virtual Screening Performance.

阅读:6
作者:Fan Ningning, Bauer Christoph A, Stork Conrad, de Bruyn Kops Christina, Kirchmair Johannes
Protein flexibility and solvation pose major challenges to docking algorithms and scoring functions. One established strategy for addressing these challenges is to use multiple protein conformations for docking (all-against-all ensemble docking). Recent studies have shown that the performance of ensemble docking can be improved by selecting the most relevant protein structures for docking. In search for a robust approach to protein structure selection, we have come up with an integrated mAchine Learning AnD DockINg approach (ALADDIN). ALADDIN employs a battery of random forest classifiers to select, individually for each compound of interest, from an ensemble of protein structures, the single most suitable protein structure for docking. ALADDIN outperformed the best single-structure docking runs, ensemble docking and a similarity-based docking approach on three out of four investigated targets, with up to 0.15, 0.11 and 0.16 higher area under the receiver operating characteristic curve (AUC) values, respectively. Only in the case of cytochrome P450 3A4, ALADDIN, like any of the other tested approaches, failed to obtain decent performance. ALADDIN can be particularly useful for structure-based virtual screening of malleable proteins, including kinases, some viral enzymes and anti-targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。