Is Structure-Based Drug Design Ready for Selectivity Optimization?

阅读:2
作者:Albanese Steven K, Chodera John D, Volkamer Andrea, Keng Simon, Abel Robert, Wang Lingle
Alchemical free-energy calculations are now widely used to drive or maintain potency in small-molecule lead optimization with a roughly 1 kcal/mol accuracy. Despite this, the potential to use free-energy calculations to drive optimization of compound selectivity among two similar targets has been relatively unexplored in published studies. In the most optimistic scenario, the similarity of binding sites might lead to a fortuitous cancellation of errors and allow selectivity to be predicted more accurately than affinity. Here, we assess the accuracy with which selectivity can be predicted in the context of small-molecule kinase inhibitors, considering the very similar binding sites of human kinases CDK2 and CDK9 as well as another series of ligands attempting to achieve selectivity between the more distantly related kinases CDK2 and ERK2. Using a Bayesian analysis approach, we separate systematic from statistical errors and quantify the correlation in systematic errors between selectivity targets. We find that, in the CDK2/CDK9 case, a high correlation in systematic errors suggests that free-energy calculations can have significant impact in aiding chemists in achieving selectivity, while in more distantly related kinases (CDK2/ERK2), the correlation in systematic error suggests that fortuitous cancellation may even occur between systems that are not as closely related. In both cases, the correlation in systematic error suggests that longer simulations are beneficial to properly balance statistical error with systematic error to take full advantage of the increase in apparent free-energy calculation accuracy in selectivity prediction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。